Mate limitation in sea lice infesting wild salmon hosts: the influence of parasite sex ratio and aggregation
0106 biological sciences
0301 basic medicine
570
QL
Dioecious parasite
QH301 Biology
590
Wild salmon
3rd-DAS
QL Zoology
01 natural sciences
QH301
03 medical and health sciences
Mate limitation
5. Gender equality
QA273
Aquaculture. Fisheries. Angling
Sea lice
14. Life underwater
Host-parasite interaction
SH
Probabilities. Mathematical statistics
Sex ratio
DOI:
10.1002/ecs2.2040
Publication Date:
2017-12-27T18:53:08Z
AUTHORS (6)
ABSTRACT
AbstractMate limitation in dioecious parasite species has the potential to impact parasite population growth. Our focus of interest was the influence of parasite sex distribution among hosts on parasite reproduction and transmission dynamics for populations of ectoparasitic sea lice (Lepeophtheirus salmonis Krøyer) establishing on wild juvenile salmon hosts. The data included more than 139,000 out‐migrating juvenile pink salmon (Oncorhynchus gorbuscha (Walbaum)) and chum salmon (Oncorhynchus keta (Walbaum)) in British Columbia, Canada, sampled over nine years. For almost all years, the sex ratio of the reproductive stages of the sea lice was female‐biased. The probability of a female being able to mate (i.e., of being attached to a fish also carrying a male louse) increased with increasing parasite abundance and parasite aggregation. We compared, with expected modeling predictions, the observed prevalence of pairs of sea lice (i.e., one reproductive louse of each sex) on a given fish and the observed probability of a female being able to mate. These comparisons showed that male and female sea lice tend to be distributed together rather than separately on hosts. Distribution together means that sea lice are distributed randomly on hosts according to a common negative binomial distribution, whereas distribution separately means that males are distributed according to a negative binomial and females are distributed in their own negative binomial among hosts. Despite the tendency for distribution together we found that, in every year, at least 30% of reproductive female sea lice experience mate limitation. This Allee effect will result in submaximal rates of parasite reproduction at low parasite abundances and may limit parasite transmission. The work has important implications for salmon parasite management and the health both of captive farm salmon populations and migratory wild stocks. More broadly, these results demonstrate the potential impact of mate limitation as a constraint to the establishment and spread of wild ectoparasite populations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (66)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....