Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units

Models, Statistical Health Policy 610 policy evaluation 3. Good health 03 medical and health sciences synthetic control method pay-for-performance 0302 clinical medicine difference-in-differences Humans Hospital Mortality Reimbursement, Incentive Research Articles
DOI: 10.1002/hec.3258 Publication Date: 2015-10-07T09:29:14Z
ABSTRACT
AbstractThis paper examines the synthetic control method in contrast to commonly used difference‐in‐differences (DiD) estimation, in the context of a re‐evaluation of a pay‐for‐performance (P4P) initiative, the Advancing Quality scheme. The synthetic control method aims to estimate treatment effects by constructing a weighted combination of control units, which represents what the treated group would have experienced in the absence of receiving the treatment. While DiD estimation assumes that the effects of unobserved confounders are constant over time, the synthetic control method allows for these effects to change over time, by re‐weighting the control group so that it has similar pre‐intervention characteristics to the treated group.We extend the synthetic control approach to a setting of evaluation of a health policy where there are multiple treated units. We re‐analyse a recent study evaluating the effects of a hospital P4P scheme on risk‐adjusted hospital mortality. In contrast to the original DiD analysis, the synthetic control method reports that, for the incentivised conditions, the P4P scheme did not significantly reduce mortality and that there is a statistically significant increase in mortality for non‐incentivised conditions. This result was robust to alternative specifications of the synthetic control method. © 2015 The Authors. Health Economics published by John Wiley & Sons Ltd.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (214)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....