Experimental research on depth perception of comfortable interactions in virtual reality

DOI: 10.1002/jsid.2030 Publication Date: 2025-02-22T11:14:21Z
ABSTRACT
AbstractVirtual reality (VR) displays aim to create highly immersive virtual environments based on the principle of binocular disparity, which reproduces spatial information of virtual scenes through the fusion processing of binocular disparity by the visual system. However, due to the differences between VR displays and real‐world scenes, the challenge of rendering in VR displays in a manner that aligns with users' natural depth perception principles has not been fully addressed. In this paper, the virtual image distances (VIDs) of RGB channels in head‐mounted display (HMD) were measured and a depth perception experiment based on random dot stereograms (RDS) according to the measured VID values was designed. The depth perception comfort fusion thresholds in VR systems were determined by psychophysical methods, and the results demonstrate that the comfort fusion threshold for uncrossed disparity is significantly lower than that for crossed disparity. Additionally, user interaction performance in the determined virtual depth scenarios showed a 12.94% reduction in reaction time and a 16.86% improvement in accuracy compared to other virtual depths. Our findings provide further understanding of comfortable depth visual presentation in VR displays, which is crucial for enhancing user experience and promoting the widespread adoption of VR technology across various applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....