Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential
Adult
Male
0303 health sciences
Tissue Engineering
Human bone marrow derived mesenchymal stromal cells
RNA sequencing
Bone Marrow Cells
Cell Differentiation
Mesenchymal Stem Cells
NCAM1/CD56
3. Good health
03 medical and health sciences
Cartilage
Chondrocytes
Bone Marrow
Tissue Engineering and Regenerative Medicine
Humans
Tissue engineering
Female
Stromal Cells
Chondrogenesis
Biomarkers
Cells, Cultured
Selection markers
DOI:
10.1002/sctm.18-0147
Publication Date:
2019-01-24T20:40:43Z
AUTHORS (6)
ABSTRACT
Abstract
Human bone marrow derived mesenchymal stromal cells (BMSCs) represent a putative cell source candidate for tissue engineering-based strategies to repair cartilage and bone. However, traditional isolation of BMSCs by adhesion to plastic leads to very heterogeneous cell populations, accounting for high variability of chondrogenic differentiation outcome, both across donors and across clonally derived strains. Identification of putative surface markers able to select BMSC subpopulations with higher chondrogenic capacity (CC) and reduced variance in chondrogenic differentiation could aid the development of BMSC-based cartilage and bone regeneration approaches. With the goal to identify predictive markers for chondrogenic BMSC populations, we assessed the gene expression profile of single cell-derived clones with high and low CC. While a clustering between high and low CC clones was observed for one donor, donor-to-donor variability hampered the possibility to achieve conclusive results when different donors were considered. Nevertheless, increased NCAM1/CD56 expression correlated in clones derived from one donor with higher CC, the same trend was observed for three additional donors (even if no significance was achieved). Enriching multiclonal BMSCs for CD56+ expression led to an increase in CC, though still highly affected by donor-to-donor variability. Our study finally suggests that definition of predictive marker(s) for BMSCs chondrogenesis is challenged by the large donor heterogeneity of these cells, and by the high complexity and plasticity of the BMSCs system. Multiple pathways and external parameters may be indeed involved in determining the chondrogenic potential of BMSCs, making the identification of putative markers still an open issue. Stem Cells Translational Medicine 2019;8:194&11
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....