Distribution of Dimeric Dihydrodiol Dehydrogenase in Pig Tissues and its Role in Carbonyl Metabolism

Aldehydes Immunodiffusion Oxidoreductases Acting on CH-CH Group Donors Macromolecular Substances Swine Ketones Chromatography, Ion Exchange Antibodies Substrate Specificity Alcohol Oxidoreductases Kinetics Organ Specificity Chromatography, Gel Animals Oxidoreductases
DOI: 10.1007/978-1-4684-5901-2_21 Publication Date: 2012-04-01T04:02:09Z
ABSTRACT
A cytosolic NADP+-dependent dihydrodiol dehydrogenase (EC 1.3.1.20), that oxidizes dihydrodiol derivatives of benzene and naphthalene to the corresponding catechols, has been thought to play an important role in metabolic detoxification of carcinogenic polycyclic aromatic hydrocarbons (Oesch, et al., 1984) and in bioactivation of naphthalene in rabbit eye (van Heyningen, 1976). Dihydrodiol dehydrogenase was first isolated from rat liver (Vogel, et al., 1980) and has been subsequently identified as 3α-hydroxysteroid dehydrogenase (Penning, et al., 1984). The enzyme is a monomer of Mr35,000 and shows dehydrogenase activity for xenobiotic alicyclic alcohols and carbonyl reductase activity, which indicate that it also functions in carbonyl metabolism. Similar monomeric dihydrodiol dehydrogenases with broad substrate specificity for xenobiotics have been purified from other mammalian livers, and have been reported to be identical with 17s-hydroxysteroid dehydrogenase in the guinea pig (Hara, et al., 1986a), mouse (Sawada, et al., 1988) and rabbit (Hara, et al., 1986b), 3α(17β)-hydroxysteroid dehydrogenases in the hamster (Ohmura, et al., 1990), 3(20)α-hydroxysteroid dehydrogenase in the monkey (Hara, et al., 1989a), and aldehyde reductase.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....