A stretch-activated K+ channel in the basolateral membrane ofXenopus kidney proximal tubule cells
Pipette
Epithelial polarity
BK channel
DOI:
10.1007/bf02583516
Publication Date:
2007-04-07T04:32:14Z
AUTHORS (1)
ABSTRACT
The present study examined whether a basolateral potassium ion (K+) channel is activated by membrane-stretching in the cell-attached patch. A K+ channel of conductance of 27.5 pS was most commonly observed in the basolateral membrane of Xenopus kidney proximal tubule cells. Channel activity increased with hyperpolarizing membrane potentials [at more positive pipette potentials (Vp)]. Open probability (Po) was 0.03, 0.13, and 0.21 at Vp values of 0, 40, and 80 mV, respectively. Barium (0.1 mM) in the pipette reduced Po by 79% at a Vp of 40 mV. Application of negative hydraulic pressure (-16 to -32 cm H2O) to the pipette markedly activated outward currents (from Po = 0.01 to 0.75) at a Vp of -80 mV, but not inward currents at a Vp of 80 mV. The size of the activated outward currents (from cell to pipette) did not change by replacing chloride with gluconate in the pipette. These results indicate that a stretch-activated K+ channel exists in the basolateral membrane of proximal tubule cells. It may play an important role as a K+ exit pathway when the cell membrane is stretched (for example, by cell swelling).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (18)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....