Microstructural characterisation of near-α titanium alloy Ti-6Al-4Sn-4Zr-0.70Nb-0.50Mo-0.40Si

Equiaxed crystals Lath Titanium alloy
DOI: 10.1007/bf02668196 Publication Date: 2007-07-16T21:05:51Z
ABSTRACT
Microstructural stability in the near-α titanium alloy (alloy 834) containing Ti-6Al-4Sn-4Zr-0.70Nb-0.50Mo-0.40Si (in weight percent), in the β and(α + β) solution-treated and quenched conditions, has been investigated. The β transus for this alloy is approximately 1333 K. Solution treatment in the β phase field at 1353 K followed by quenching in water at room temperature resulted in the formation of α′ martensite platelets with high dislocation density and stacking faults. Thin films of β are found to be sandwiched between interface phases, which, in turn, are sandwiched at the interplatelet boundaries of lath martensite. The interface phase is a subject of much controversy in the literature. Solution treatment at 1303 K in the(α + β) phase field followed by quenching in water at room temperature resulted in the near-equiaxed primary α and transformed β. Both the β and(α + β) solution-treated specimens were aged in the temperature range of 873 to 973 K. While aging the —treated specimen at 973 K,(α + β)-treated specimen, even at a lower temperature of 873 K for 24 hours, caused precipitation of suicides predominantly at the interplatelet boundaries of martensite laths. Electron diffraction analysis confirmed them to be hexagonal suicide S2 witha = 0.702 nm andc = 0.368 nm. The above difference in the precipitation could be attributed to the partitioning of a higher amount of β- stabilizing elements as well as silicide-forming elements to the transformed β in the(α + β) solution-treated condition. However, ordering of theα′ phase was observed under all of the aging conditions studied. The ordered domains were due to the longer aging times, which cause local increases in the level of theα-stabilizing elements.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (61)