Illuminating dark photons with high-energy colliders
Nuclear and High Energy Physics
High Energy Physics - Phenomenology
High Energy Physics - Experiment (hep-ex)
High Energy Physics - Phenomenology (hep-ph)
0103 physical sciences
FOS: Physical sciences
01 natural sciences
7. Clean energy
High Energy Physics - Experiment
DOI:
10.1007/jhep02(2015)157
Publication Date:
2015-02-26T14:44:28Z
AUTHORS (4)
ABSTRACT
36 pages + references, 14 figures, 3 tables. Fixed typos, added references<br/>High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h -> Z Z_D -> 4l, and in Drell-Yan events, pp -> Z_D -> ll. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h -> Z_D Z_D -> 4l. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z_D, and can probe epsilon >~ 9 x 10^(-4) (4 x 10^(-4)) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h -> Z Z_D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h -> Z_D Z_D can allow sensitivity to the Z_D for epsilon >~ 10^(-9) - 10^(-6) (10^(-10) - 10^(-7)) for the mass range 2 m_mu < m_(Z_D) < m_h/2 by searching for displaced dark photon decays. We also compare the Z_D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude epsilon as low as 3 x 10^(-2). Sensitivity can be improved by up to a factor of ~2 with HL-LHC data, and an additional factor of ~4 with ILC/GigaZ data.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (151)
CITATIONS (267)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....