Uniform well-posedness and singular limits of the isentropic Navier–Stokes–Maxwell system in a bounded domain

Isentropic process
DOI: 10.1007/s00033-014-0484-8 Publication Date: 2014-12-01T14:52:20Z
ABSTRACT
We prove the global-in-time and uniform-in-\({(\epsilon_1,\epsilon_2)}\) of strong solutions to the isentropic Navier–Stokes–Maxwell system in a bounded domain, when \({\epsilon_1}\) is the Mach number, and \({\epsilon_2}\) is the dielectric constant. Consequently, we obtain the convergences of compressible Navier–Stokes–Maxwell system to the incompressible Navier–Stokes–Maxwell system (\({\epsilon_1\rightarrow 0}\) and \({\epsilon_2}\) fixed), the compressible magnetohydrodynamic equations (\({\epsilon_1}\) fixed and \({\epsilon_2\rightarrow 0}\)) or the incompressible magnetohydrodynamic equations (\({\epsilon_1\rightarrow 0}\) and \({\epsilon_2\rightarrow 0}\)) for well-prepared data.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (21)
CITATIONS (15)