Genetic relationships within Brassica rapa as inferred from AFLP fingerprints

0303 health sciences Geography resistance genes Brassica rapa dna rapd markers Genetic Variation germplasm 15. Life on land campestris diversity taxonomy 03 medical and health sciences Phenotype Species Specificity cultivars juncea Cluster Analysis length polymorphisms rflps Nucleic Acid Amplification Techniques Polymorphism, Restriction Fragment Length
DOI: 10.1007/s00122-005-1967-y Publication Date: 2005-04-01T09:42:50Z
ABSTRACT
Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of 96 accessions, representing mainly leafy vegetable types cultivated in China. On the basis of the AFLP data obtained, we constructed phenetic trees using MEGA 2.1: software. The level of polymorphism was very high, and it was evident that the amount of genetic variation present within the groups was often comparable to the variation between the different cultivar groups. Cluster analysis revealed groups, often with low bootstrap values, which coincided with cultivar groups. The most interesting information revealed by the phenetic trees was that different morphotypes are often more related to other morphotypes from the same region (East Asia vs. Europe) than to similar morphotypes from different regions, suggesting either an independent origin and or a long and separate domestication and breeding history in both regions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (173)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....