Genetic dissection of temperature-dependent sorghum growth during juvenile development
Chlorophyll
Cold Temperature
0301 basic medicine
2. Zero hunger
03 medical and health sciences
Genotype
Quantitative Trait Loci
DNA Fingerprinting
Chromosomes, Plant
Fluorescence
Sorghum
Microsatellite Repeats
DOI:
10.1007/s00122-014-2350-7
Publication Date:
2014-08-21T21:35:08Z
AUTHORS (8)
ABSTRACT
Promising genome regions for improving cold tolerance of sorghum were identified on chromosomes SBI-01, SBI-03, SBI-07, and SBI-10. Chlorophyll fluorescence had no major effect on growth rates at low temperatures. Developing fast growing sorghum seedlings is an important breeding goal for temperate climates since low springtime temperatures are resulting in a prolonged juvenile development. The adaptation of sorghum to tropical and subtropical highlands gives hint for certain genetic variation. The goals of the present study were to detect marker-trait associations for leaf and dry matter growth rate and for chlorophyll fluorescence and content (SPAD) in relation to temperature. A diversity set comprising 194 genotypes was tested in eight controlled environments with temperatures ranging from 9.4 to 20.8 °C. Significant marker-trait associations (p < 0.05) were identified for each individual temperature regime and on the parameters of regression analyses describing the responses of growth or chlorophyll related traits to temperatures. The diversity set was fingerprinted with 171 diversity array technology (DArT) and 31 simple-sequence repeat (SSR) markers. SSRs were used to analyze the population structure while association studies were performed on DArT markers. Promising marker-trait associations for growth rates in relation to temperature were detected on chromosomes SBI-01, SBI-03, SBI-07, and SBI-10. Many promising loci were also significantly associated to the results obtained in individual low-temperature environments. Marker-trait associations for chlorophyll content and fluorescence did occasionally co-locate to those for growth during juvenile development but there was no evidence supporting our hypothesis that seedling growth at low temperatures is largely influenced by SPAD or fluorescence.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....