Deletion of ARNT/HIF1β in pancreatic beta cells does not impair glucose homeostasis in mice, but is associated with defective glucose sensing ex vivo
Membrane Potential, Mitochondrial
Mice, Knockout
0303 health sciences
Human Growth Hormone
Pulmonary Gas Exchange
Aryl Hydrocarbon Receptor Nuclear Translocator
Glucose Tolerance Test
Mice
03 medical and health sciences
Glucose
Oxygen Consumption
Insulin-Secreting Cells
Insulin Secretion
Animals
Homeostasis
Humans
Insulin
NADP
DOI:
10.1007/s00125-015-3768-4
Publication Date:
2015-09-26T17:48:54Z
AUTHORS (11)
ABSTRACT
It has been suggested that the transcription factor ARNT/HIF1β is critical for maintaining in vivo glucose homeostasis and pancreatic beta cell glucose-stimulated insulin secretion (GSIS). Our goal was to gain more insights into the metabolic defects seen after the loss of ARNT/HIF1β in beta cells.The in vivo and in vitro consequences of the loss of ARNT/HIF1β were investigated in beta cell specific Arnt/Hif1β knockout mice (β-Arnt (fl/fl/Cre) mice).The only in vivo defects found in β-Arnt (fl/fl/Cre) mice were significant increases in the respiratory exchange ratio and in vivo carbohydrate oxidation, and a decrease in lipid oxidation. The mitochondrial oxygen consumption rate was unaltered in mouse β-Arnt (fl/fl/Cre) islets upon glucose stimulation. β-Arnt (fl/fl/Cre) islets had an impairment in the glucose-stimulated increase in Ca(2+) signalling and a reduced insulin secretory response to glucose in the presence of KCl and diazoxide. The glucose-stimulated increase in the NADPH/NADP(+) ratio was reduced in β-Arnt (fl/fl/Cre) islets. The reduced GSIS and NADPH/NADP(+) levels in β-Arnt (fl/fl/Cre) islets could be rescued by treatment with membrane-permeable tricarboxylic acid intermediates. Small interfering (si)RNA mediated knockdown of ARNT/HIF1β in human islets also inhibited GSIS. These results suggest that the regulation of GSIS by the KATP channel-dependent and -independent pathways is affected by the loss of ARNT/HIF1β in islets.This study provides three new insights into the role of ARNT/HIF1β in beta cells: (1) ARNT/HIF1β deletion in mice impairs GSIS ex vivo; (2) β-Arnt (fl/fl/Cre) mice have an increased respiratory exchange ratio; and (3) ARNT/HIF1β is required for GSIS in human islets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....