A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
Benchmark (surveying)
Surrogate model
DOI:
10.1007/s00158-019-02391-8
Publication Date:
2019-11-07T12:03:21Z
AUTHORS (3)
ABSTRACT
In the expensive structural optimization, the data-driven surrogate model has been proven to be an effective alternative to physical simulation (or experiment). However, the static surrogate-assisted evolutionary algorithm (SAEA) often becomes powerless and inefficient when dealing with different types of expensive optimization problems. Therefore, how to select high-reliability surrogates to assist an evolutionary algorithm (EA) has always been a challenging task. This study aimed to dynamically provide an optimal surrogate for EA by developing a brand-new SAEA framework. Firstly, an adaptive surrogate model (ASM) selection technology was proposed. In ASM, according to different integration criteria from the strategy pool, elite meta-models were recombined into multiple ensemble surrogates in each iteration. Afterward, a promising model was adaptively picked out from the model pool based on the minimum root of mean square error (RMSE). Secondly, we investigated a novel ASM-based EA framework, namely ASMEA, where the reliability of all models was updated in real-time by generating new samples online. Thirdly, to verify the performance of the ASMEA framework, two instantiation algorithms are widely compared with several state-of-the-art algorithms on a commonly used benchmark test set. Finally, a real-world antenna structural optimization problem was solved by the proposed algorithms. The results demonstrate that the proposed framework is able to provide a high-reliability surrogate to assist EA in solving expensive optimization problems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (41)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....