A multi-objective electromagnetism algorithm for a bi-objective hybrid no-wait flowshop scheduling problem
Tardiness
Electromagnetism
DOI:
10.1007/s00170-013-5376-0
Publication Date:
2013-10-26T04:05:40Z
AUTHORS (1)
ABSTRACT
This article studies multi-objective hybrid no-wait flowshop scheduling problems to minimize both makespan and total tardiness. This article mathematically formulates the problem using an effective multi-objective mixed integer linear programming models. Since the problem is NP-hard and it is difficult to find an optimal solution in a reasonable computational time, an efficient multi-objective electromagnetism algorithm (MOEA) is presented as the solution procedure. Electromagnetism algorithm is known as a flexible and effective population-based algorithm utilizing an attraction/repulsion mechanism to move the particles towards optimality. MOEA is carefully evaluated for its performance against multi-objective immune algorithms and the adaptation of a well-known multi-objective simulated annealing in the relevant literature by means of multi-objective performance measures and statistical tools. The results show that the proposed solution method outperforms the others.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....