Scutellarin suppresses neuroinflammation via the inhibition of the AKT/NF-κB and p38/JNK pathway in LPS-induced BV-2 microglial cells
Scutellarin
IκBα
IκB kinase
DOI:
10.1007/s00210-018-1503-7
Publication Date:
2018-04-21T01:29:42Z
AUTHORS (12)
ABSTRACT
In vitro and in vivo studies indicate that scutellarin (SCU) exerts anti-inflammatory effects in the central nervous system (CNS) and inhibits microglia activation. This study investigated the anti-neuroinflammation molecular mechanisms exerted by scutellarin in LPS-induced BV-2 cells. The results showed that production of TNF-α, IL-1β, IL-6, and NO and TNF-α, IL-1β, IL-6, and iNOS mRNA were inhibited by scutellarin, which was independent of cytotoxicity as assessed by a CCK8 assay. Western blot analysis indicated that NF-κB-p65 phosphorylation was suppressed by scutellarin via inhibition of IκB degradation and IKKβ activation, which coincided with blockage of nuclear translocation of NF-κB as shown by immunofluorescent staining. Consistent with the inhibition of NF-κB, scutellarin inhibited the phosphorylation of p38, JNK, and AKT without affecting phosphorylation of ERK1/2 or PI3K in LPS-induced BV-2 cells. Overall, the present study suggests that scutellarin inhibits the production of pro-inflammatory mediators via inhibition of the IKK-dependent NF-κB and p38/JNK signaling pathway, which inhibits microglia activation and exerts anti-inflammation, indicating its potential therapeutic effect for neurodegenerative and cerebrovascular diseases.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (32)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....