Repeated double cross-validation applied to the PCA-LDA classification of SERS spectra: a case study with serum samples from hepatocellular carcinoma patients
Serum
Male
Double cross-validation; Hepatocellular carcinoma; PCA-LDA; SERS; Serum; Aged; Carcinoma, Hepatocellular; Discriminant Analysis; Humans; Liver Neoplasms; Male; Middle Aged; Principal Component Analysis; Spectrum Analysis, Raman
Principal Component Analysis
Carcinoma, Hepatocellular
PCA-LDA
Hepatocellular carcinoma
SERS
Liver Neoplasms
Discriminant Analysis
Middle Aged
Spectrum Analysis, Raman
Double cross-validation
01 natural sciences
3. Good health
0104 chemical sciences
Liver Neoplasm
Principal Component Analysi
Humans
Discriminant Analysi
Human
Research Paper
Aged
DOI:
10.1007/s00216-020-03093-7
Publication Date:
2020-12-08T20:06:01Z
AUTHORS (9)
ABSTRACT
AbstractIntense label-free surface-enhanced Raman scattering (SERS) spectra of serum samples were rapidly obtained on Ag plasmonic paper substrates upon 785 nm excitation. Spectra from the hepatocellular carcinoma (HCC) patients showed consistent differences with respect to those of the control group. In particular, uric acid was found to be relatively more abundant in patients, while hypoxanthine, ergothioneine, and glutathione were found as relatively more abundant in the control group. A repeated double cross-validation (RDCV) strategy was applied to optimize and validate principal component analysis-linear discriminant analysis (PCA-LDA) models. An analysis of the RDCV results indicated that a PCA-LDA model using up to the first four principal components has a good classification performance (average accuracy was 81%). The analysis also allowed confidence intervals to be calculated for the figures of merit, and the principal components used by the LDA to be interpreted in terms of metabolites, confirming that bands of uric acid, hypoxanthine, ergothioneine, and glutathione were indeed used by the PCA-LDA algorithm to classify the spectra.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (43)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....