Thermodynamic properties of hyperpolarization-activated current (Ih) in a subgroup of primary sensory neurons

Male Electroshock 0303 health sciences Patch-Clamp Techniques Potassium Channels Temperature Cyclic Nucleotide-Gated Cation Channels Ion Channels Rats Electrophysiology Kinetics 03 medical and health sciences Ganglia, Spinal Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Animals Thermodynamics Neurons, Afferent Rats, Wistar Ion Channel Gating Algorithms
DOI: 10.1007/s00221-006-0473-z Publication Date: 2006-05-04T09:39:31Z
ABSTRACT
Ih is a poorly selective cation current that activates upon hyperpolarization, present in various types of neurons. Our aim was to perform a detailed thermodynamic analysis of Ih gating kinetics, in order to assess putative structural changes associated with its activation and deactivation. To select dorsal root ganglia neurons that exhibit large Ih, we applied a current signature method by Petruska et al. (J Neurophysiol 84:2365-2379, 2000) and found appropriate neurons in cluster 4. Currents elicited by 3,000-ms hyperpolarizing pulses at 25 and 33 degrees C were fitted with double exponential functions, yielding time constants similar to those of HCN1. The fast activation and deactivation rates showed temperature coefficients (Q10) of 2.9 and 3.1, respectively, while Q10 of the absolute conductance was 1.3. Using the Arrhenius-Eyring formalism we computed heights of voltage-independent Gibbs free energy and entropy barriers for each rate. The free energy barriers of the fast rates were just approximately 2RT units lower than those of the corresponding slow rates (31.3 vs. 33.2RT for activation, and 24.7 vs. 25.8RT for deactivation, at 25 degrees C). Interestingly, the entropy barriers of the slow rates were negative: -15.2R units for activation and -11.9R units for deactivation, compared to 4.6 and 1.3R units, respectively, for the fast component. The equivalent gating charge (zg) (3.75 +/- 0.32, mean +/- SEM, at 25 degrees C) and half-activation potential (V1/2) (-70.0 +/- 1.3 mV at 25 degrees C) did not vary significantly with temperature.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (58)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....