Metabolism of fluoranthene by Mycobacterium sp. strain AP1

Fluoranthene Tricarboxylic acid Decarboxylation Metabolic pathway
DOI: 10.1007/s00253-005-0120-9 Publication Date: 2005-08-24T07:52:15Z
ABSTRACT
The pyrene-degrading Mycobacterium strain AP1 was found to utilize fluoranthene as a sole source of carbon and energy. Identification of metabolites formed from fluoranthene (by growing cells and washed-cell suspensions), the kinetics of metabolite accumulation, and metabolite-feeding studies all indicated that strain AP1 oxidizes fluoranthene using three alternative routes. The first route is initiated by dioxygenation at C-7 and C-8 and, following meta cleavage and pyruvate release, produces a hydroxyacenaphthoic acid that is decarboxylated to acenaphthenone (V). Monooxygenation of this ketone to the quinone and subsequent hydrolysis generates naphthalene-1,8-dicarboxylic acid (IV), which is further degraded via benzene-1,2,3-tricarboxylic acid (III). A second route involves dioxygenation at C-1 and C-2, followed by dehydrogenation and meta cleavage of the resulting diol. A two-carbon fragment excision of the meta cleavage product yields 9-fluorenone-1-carboxylic acid (II), which appears to undergo angular dioxygenation and further degradation to produce benzene-1,2,3-tricarboxylic acid (III), merging this route with the 7,8-dioxygenation route. Decarboxylation of benzene-1,2,3-tricarboxylic acid to phthalate (VIII), as well as further oxidation of the latter, would connect both routes with the central metabolism. The identification of Z-9-carboxymethylenefluorene-1-carboxylic acid (I) suggests a third route for fluoranthene degradation involving dioxygenation at C-2, C-3, and ortho cleavage. There is no evidence of any further degradation of this compound.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (38)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....