Association of paraspinal muscle water–fat MRI-based measurements with isometric strength measurements

Adult Male Lumbar Vertebrae Paraspinal Muscles Magnetic Resonance Imaging Young Adult 03 medical and health sciences Cross-Sectional Studies 0302 clinical medicine Adipose Tissue Body Water Isometric Contraction Humans Female Protons Low Back Pain Psoas Muscles
DOI: 10.1007/s00330-018-5631-8 Publication Date: 2018-07-16T06:05:57Z
ABSTRACT
Chemical shift encoding-based water-fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength.Twenty-six healthy subjects (57.7% women; age: 30 ± 6 years) underwent 3T axial MRI of the lumbar spine using a six-echo 3D spoiled gradient echo sequence for chemical shift encoding-based water-fat separation. Erector spinae and psoas muscles were segmented bilaterally from L2 level to L5 level to determine CSA and PDFF. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer.Significant correlations between CSA and muscle strength measurements were observed for erector spinae muscle CSA (r = 0.40; p = 0.044) and psoas muscle CSA (r = 0.61; p = 0.001) with relative flexion strength. Erector spinae muscle PDFF correlated significantly with relative muscle strength (extension: r = -0.51; p = 0.008; flexion: r = -0.54; p = 0.005). Erector spinae muscle PDFF, but not CSA, remained a statistically significant (p < 0.05) predictor of relative extensor strength in multivariate regression models (R2adj = 0.34; p = 0.002).PDFF measurements improved the prediction of paraspinal muscle strength beyond CSA. Therefore, chemical shift encoding-based water-fat MRI may be used to detect subtle changes in the paraspinal muscle composition.• We investigated the association of paraspinal muscle fat fraction based on chemical shift encoding-based water-fat MRI with isometric strength measurements in healthy subjects. • Erector spinae muscle PDFF correlated significantly with relative muscle strength. • PDFF measurements improved prediction of paraspinal muscle strength beyond CSA.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (81)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....