Femtosecond X-ray induced electron kinetics in dielectrics: application for FEL-pulse-duration monitor

Pulse duration Free electron model
DOI: 10.1007/s00340-015-6005-4 Publication Date: 2015-01-14T11:56:57Z
ABSTRACT
Modern X-ray free-electron lasers (FELs) provide pulses with photon energies from a few tens of eV up to the tens of keV and durations as short as only a few femtoseconds. Experimental pump–probe scheme with a FEL pump and a visible light probe of a solid-state target can be used for the pulse-duration monitor on a shot-to-shot basis. To study the electron cascading in different materials used for pulse-duration monitor, XCASCADE, a Monte Carlo model of the X-ray-induced electron cascading within an irradiated target is developed. It is shown here that the electron cascade duration is sensitive to a choice of material. An appropriately selected target can significantly shorten the electron relaxation times. The grounds, upon which such a choice of the material can be made, are discussed. The results suggest that for photon energies of 24 keV, one could achieve direct monitoring of the pulse duration of 40 fs. Further deconvolution of the electron density into the contribution from the pulse itself and from the secondary cascading can increase the resolution up to a scale of a femtosecond.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (44)