Genomic insights into the molecular mechanisms of a Pseudomonas strain significant in its survival in Kongsfjorden, an Arctic fjord

0301 basic medicine Aquatic Organisms Microbial Viability Arctic Regions Adaptation, Biological Sequence Analysis, DNA Cold Climate 03 medical and health sciences Bacterial Proteins Pseudomonas Operon 14. Life underwater Estuaries Genome, Bacterial
DOI: 10.1007/s00438-021-01788-9 Publication Date: 2021-04-28T10:06:42Z
ABSTRACT
Whole-genome sequence of Pseudomonas sp. Kongs-67 retrieved from Kongsfjorden, an Arctic fjord, has been investigated to understand the molecular machinery required for microbial association and survival in a polar fjord. The genome size of Kongs-67 was 4.5 Mb and was found to be closely related to the Antarctic P. pelagia strain CL-AP6. This genome encodes for chemotaxis response regulator proteins (CheABB1RR2VWYZ), chemoreceptors (methyl-accepting chemotaxis proteins), and flagellar system proteins (FliCDEFGOPMN, FlhABF, FlgBCDEFGHIJKL, and MotAB proteins) vital in cellular interactions in the dynamic fjord environment. A high proportion of genes were assigned to biofilm formation (pgaABCD operon) and signal transduction protein categories (EnvZ/OmpR, CpxA/CpxR, PhoR/PhoB, PhoQ) indicating that the biofilm formation in Kongs-67 could be tightly regulated in response to the availability of signalling-metabolites. The genome of Kongs-67 encoded for HemBCD, CbiA, CobABNSTOQCDP, and BtuBFR proteins involved in cobalamin biosynthesis and transport along with proteins for siderophore-mediated iron channelling (PchR, Fur protein, FpvA); crucial in a microbial association. The genomes of Arctic strain Kongs-67 and Antarctic strain CL-AP6 were similar which is indicative of retainment of the core genes in the polar Pseudomonas strains that could be vital in conferring evolutionary adaptation for its survival in a polar fjord. Thus, our study contributes to the knowledge on the genetics of a polar Pseudomonas member exhibiting biosynthetic potentials and suggest Pseudomonas sp. Kongs-67 as a suitable candidate for the investigation of functional aspects of molecular adaptations in the polar marine environment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (4)