Carbon allocation in fruit trees: from theory to modelling

0106 biological sciences 330 port de la plante Allocation régulation physiologique F62 - Physiologie végétale - Croissance et développement http://aims.fao.org/aos/agrovoc/c_5969 01 natural sciences développement biologique modèle mathématique Architecture [SDV.BV]Life Sciences [q-bio]/Vegetal Biology PEACH FRUIT http://aims.fao.org/aos/agrovoc/c_3128 http://aims.fao.org/aos/agrovoc/c_1301 arbre fruitier http://aims.fao.org/aos/agrovoc/c_24199 2. Zero hunger U10 - Informatique, mathématiques et statistiques http://aims.fao.org/aos/agrovoc/c_32719 15. Life on land Carbon [SDE.MCG.AGRO]Environmental Sciences/Global Changes/domain_sde.mcg.agro http://aims.fao.org/aos/agrovoc/c_921 13. Climate action Source–sink carbone Model
DOI: 10.1007/s00468-007-0176-5 Publication Date: 2007-10-02T11:30:07Z
ABSTRACT
Carbon allocation within a plant depends on complex rules linking source organs (mainly shoots) and sink organs (mainly roots and fruits). The complexity of these rules comes from both regulations and interactions between various plant processes involving carbon. This paper presents these regulations and interactions, and analyses how agricultural management can influence them. Ecophysiological models of carbon production and allocation are good tools for such analyses. The fundamental bases of these models are first presented, focusing on their underlying processes and concepts. Different approaches are used for modelling carbon economy. They are classified as empirical, teleonomic, driven by source–sink relationships, or based on transport and chemical/biochemical conversion concepts. These four approaches are presented with a particular emphasis on the regulations and interactions between organs and between processes. The role of plant architecture in carbon partitioning is also discussed and the interest of coupling plant architecture models with carbon allocation models is highlighted. As an illustration of carbon allocation models, a model developed for peach trees, describing carbon transfer within the plant, and based on source–sink and Munch transport theory is presented and used for analyzing the link between roots, shoots and reproductive compartments. On this basis, the consequences of fruit load or plant pruning on fruit and vegetative growth can be evaluated.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (100)
CITATIONS (122)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....