Probabilistic collaborative representation on Grassmann manifold for image set classification
Robustness
Manifold (fluid mechanics)
Contextual image classification
Representation
DOI:
10.1007/s00521-020-05089-x
Publication Date:
2020-07-04T13:03:41Z
AUTHORS (4)
ABSTRACT
For image-set based classification, sparse coding and collaborative representation have gained a lot of attention due to their robustness and effectiveness. However, most existing methods focus on collaborative representation in Euclidean space. It still remains a research gap to handle this problem from Geometry-Aware perspective and interpret the mechanism of collaborative representation on nonlinear manifold. In this paper, we propose a novel method named probabilistic collaborative representation on Grassmann manifold for image set classification, which is interpreted from a probabilistic viewpoint. Specifically, we regard each image set as a point on Grassmann manifold inspired by its non-Euclidean geometry and then perform collaborative representation on the space of symmetric matrices, which enables us to explain the internal mechanism of classification and derive a closed form solution. Moreover, classification criterion is designed to further improve the performance of the proposed method. Experimental results on four databases (i.e. Honda/UCSD, YaleB, Youtube Celebrities and ETH-80) for face recognition task and object recognition task demonstrate the robustness and effectiveness of our proposed method.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....