Artificial neural network for the evaluation of electric propulsion system in unmanned aerial vehicles
Artificial neural network
Unmanned aerial vehicle
Multicopter
Electric propulsion system
Drone
DOI:
10.1007/s00521-025-11043-6
Publication Date:
2025-02-21T10:47:58Z
AUTHORS (7)
ABSTRACT
In the domain of unmanned aerial vehicles (UAVs), evaluating electric propulsion systems is pivotal for enhancing performance and efficiency. This study employs a scaled conjugate gradient (SCG) algorithm to train an artificial neural network (ANN) for the propulsion system evaluation, offering a cutting-edge alternative to traditional experimental methods. The ANN architecture consists of an input layer, a single hidden layer, and an output layer. By varying the number of neurons in the hidden layer from 1 to 100, the optimal configuration with 2 neurons was identified, achieving high predictive accuracy. The model was trained using experimental datasets, predicting thrust force with an overall R2 value exceeding 0.99 across training, validation, and testing phases, and a low overall prediction error of 1.27%. These results demonstrate the ANN’s capability to generalize from training data, making it a valuable tool for UAV designers. Integrating ANN-based evaluations accelerates decision-making processes and optimizes UAV performance, marking a significant advancement in UAV technology.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (23)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....