Parametric Study of Smooth Joint Parameters on the Shear Behaviour of Rock Joints

Shearing (physics) Direct shear test Sawtooth wave Particle Flow
DOI: 10.1007/s00603-014-0641-6 Publication Date: 2014-08-23T10:01:27Z
ABSTRACT
This paper aims to study the shear behaviour of rock joints in a direct shear test using the particle flow code PFC2D. In this numerical approach, the intact rock is simulated by densely packed circular particles that are bonded together at their contact points; joint surfaces can be explicitly simulated using the modified smooth joint (SJ) model. In the modified SJ model for simulation of direct shear test, micro-scale slip surfaces (smooth joint contacts) are applied at contacts between the particles of the upper and lower blocks of the shear box and the mechanical behaviour of the joints is controlled by the micro-scale properties of the smooth joint contacts. Two joint profiles of standard JRC 10–12 and a sawtooth triangular joint with a base angle of 15° were selected for testing. The results of direct shear tests under different normal stresses on these two profiles show that for the sawtooth triangular joints under a normal stress of 1 MPa, the shearing mechanism is purely sliding, and for the JRC 10–12 profile under a normal stress of 4 MPa, the shearing of first-order asperities controls the shearing mechanism. A parametric study of the micro-properties of the smooth joints under these two different shearing mechanisms was undertaken. The results of this study show that the SJ normal stiffness and the SJ shear stiffness have insubstantial effect on the peak shear strength in sliding mode, but that the SJ normal stiffness has a significant effect on the dilation rate in both sliding and shearing modes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (119)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....