Synthesis, structure and biological activity of a new and efficient Cd(II)–uracil derivative complex system for cleavage of DNA
Nuclease
Cleavage (geology)
DOI:
10.1007/s00775-005-0045-x
Publication Date:
2005-11-02T13:15:33Z
AUTHORS (9)
ABSTRACT
The new complex formed by Cd(II) and the 1:2 Schiff-base-type ligand 2,6-bis[1-(4-amino-1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxopyrimidin-5-yl)imino]ethylpyridine (DAPDAAU) has been chemically and structurally characterized by X-ray diffraction: the ion Cd(II) is surrounded by six nitrogen atoms from two DAPDAAU ligands which coordinates each one in a tridentate fashion through the pyridine ring (N1) and both azomethine nitrogen atoms (N5). The interaction of the Cd(II) complex (compound I) with calf-thymus DNA as observed by circular dichroism spectroscopy suggests the initial unwinding of the DNA double helix strongly depends on increasing incubation times and metal-to-nucleic acid molar ratios. Electrophoretic experiments indicate that the cadmium complex induces cleavage of the plasmid pBR322 DNA to give ulterior nicking and shortening of this molecule, as a result of the complex binding to DNA, resulting in the conclusion that compound I behaves as a chemical nuclease. Cytotoxic activity of the Cd(II) complex against selected different human cancer cell lines is specific and increases with increasing concentration of the metal compound; this fact indicates the potential antitumor character of the complex. When the culture medium is supplemented with compound I, a remarkable inhibition of the growing cell is observed, important cell degeneration appears before 48 h and abundant precipitates are formed that correspond to cell residues and denatured proteins.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....