Computational studies of metal carbonyl complexes of 3[4-ethyl(phenly)imino][indoline-2-one] and 3[4-butyl(phenly)imino][indoline-2-one]
Isatin
Metal-ligand charge transfer
Schiff base
UV-Vis absorption spectra
Density functional theory
Metal carbonyl complex
01 natural sciences
0104 chemical sciences
DOI:
10.1007/s00894-018-3709-5
Publication Date:
2018-06-22T03:43:10Z
AUTHORS (2)
ABSTRACT
Use and application of Schiff bases are extended to many different fields of technology. (ISE)M(CO)5 complex [M = Cr (1), Mo (2), W (3), and where ISE is 3[4-ethyl(phenly)imino][indoline-2-one]; and (ISB)M(CO)5 [M = Cr (4), Mo (5), W (6)], where ISB is 3[4-butly(phenly)imino][indoline-2-one] were investigated by computational methods. Computations were carried out using density functional theory (DFT) with B3LYP and CAM-B3LYP functionals, in conjunction with LanL2DZ basis set for metals and cc-PVTZ basis set for other atoms. Time-dependent density functional theory (TDDFT) was used at the same level to obtain the electronic transitions. Molecular orbital energies, UV-Vis spectra, and total electron densities of investigated molecules were shown in the gas phase and in THF. Metal complexes showed higher absorption coefficients compared to ISE and ISB in the visible region. Additionally, they displayed absorption peaks at longer wavelengths and full MLCT character in solution, and W complexes required less energy compared to the complexes of other investigated metal ions. Among the investigated systems, (ISE)W(CO)5 and (ISB)W(CO)5 complexes with lowest HOMO-LUMO gaps are found to be the best candidates for photosensitive material production. Graphical Abstract UV-Vis absorption spectra of ISE and (ISE)W(CO)5.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....