Improvement of jelly 3D printing using ultrasound treatment and calcium chloride

Pectin Shear modulus
DOI: 10.1007/s10068-024-01517-z Publication Date: 2024-01-27T12:02:13Z
ABSTRACT
This study investigated the effects of ultrasound treatment or calcium chloride (CaCl2) addition on the physical properties of jelly formulations. Elastic modulus (G'), loss modulus (G"), tan δ, shear modulus, yield stress (τ0), phase angle (δ), and gel strength were the parameters selected to describe the requirements of jelly printing, such as fidelity, shape retention, and extrudability. Ultrasound treatment of the jelly formulation without pectin increased the G' and shear moduli values, while decreasing the δ and gel strength. The addition of CaCl2 to the jelly formulation with pectin increased the G', G", shear modulus, τ0, and gel strength but lowered the tan δ and δ values. Both ultrasound treatment and CaCl2 addition improved the jelly printing requirements and demonstrated the potential to control the physical properties of jelly formulations for 3D printing using fused deposition modeling.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....