Evaluation of the effectiveness of micro-Raman spectroscopy in monitoring the mineral contents change of human enamel in vitro

Distilled water
DOI: 10.1007/s10103-017-2197-7 Publication Date: 2017-04-01T09:40:34Z
ABSTRACT
The purpose of this in vitro study was to investigate the efficacy of micro-Raman spectroscopy on detecting mineral content change during the demineralization and de/remineralization cycling process. The enamel samples (n = 55) were randomly divided into three groups and separately treated with demineralization solution (n = 20), de/remineralization cycling solution (n = 30), and distilled water (n = 5). Micro-Raman spectroscopy, microhardness (MHS), and the released calcium ions concentration were performed before and after treatment, respectively. A one-way analysis of variance (ANOVA) with a post hoc Tukey test was used to analyze the results. The Spearman correlation coefficients among the parameters of Raman relative intensity decrease (RRID%), the percentage of MHS loss (PML), and the released calcium ions concentration were also analyzed. In demineralization group, RRID%, PML, and released calcium ions concentration were highly correlated with each other (r = 0.979, p < 0.001; r = 0.984, p < 0.001; and r = 0.983, p < 0.001, respectively). While for the de/remineralization cycling group, there also existed a high correlation between RRID% and PML (r = 0.987, p < 0.001). In conclusion, micro-Raman spectroscopy could effectively monitor the mineral content change, and its efficacy was validated by the measurement of released calcium ions concentration and MHS.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (7)