Effect of low-osmolar contrast medium iopromide and iso-osmolar iodixanol on DNA fragmentation in renal tubular cell culture
Iopromide
Iodixanol
Fragmentation
Nephrology
DOI:
10.1007/s10157-013-0774-z
Publication Date:
2013-01-23T06:15:04Z
AUTHORS (3)
ABSTRACT
Intravascular administration of iodinated contrast media continues to be a common cause of hospital-acquired acute kidney injury. Accumulating evidence suggests that radiocontrast agent-induced nephrotoxicity is associated with increased oxidative stress, which leads to renal tissue damage with DNA fragmentation. We therefore tested whether an iso-osmolar contrast medium (iodixanol) causes less oxidative DNA damage to renal tubular cells than a low-osmolar contrast medium (iopromide).HK-2 cells (human proximal renal tubular cell line) were incubated at different time points (10 min-2 h) with increasing concentrations (20-120 mg/ml iodine) of iodixanol or of iopromide. Oxidative DNA damage to renal tubular cells was measured by alkaline comet assay (single-cell gel electrophoresis).Both iso- and low-osmolar contrast agents induced time- and concentration-dependent DNA fragmentation. DNA fragmentation was maximal at 2 h with 120 mg/ml iodine for iopromide (32 ± 27 tail moments) and iodixanol (46 ± 41 tail moments); both were significantly different from the control value with 3.15 ± 1.6 tail moments (Student's t test; p < 0.001). After 1 and 2 h and for all concentrations, iodixanol produced significantly higher DNA fragmentation than iopromide (ANOVA for 1 h p = 0.039 and 2 h p = 0.025, respectively).We were able to demonstrate for the first time that an iso-osmolar contrast medium induced even greater oxidative stress and DNA damage than a low-osmolar agent in HK-2 cells. This could provide an explanation for the nephrotoxicity that also is observed with iodixanol in clinical practice.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (18)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....