Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry
Polymers
0206 medical engineering
Blood Pressure
Equipment Design
02 engineering and technology
Microspheres
Equipment Failure Analysis
03 medical and health sciences
0302 clinical medicine
Heart Valve Prosthesis
Pulsatile Flow
Image Interpretation, Computer-Assisted
Particle Size
Rheology
Blood Flow Velocity
DOI:
10.1007/s10439-006-9117-5
Publication Date:
2006-05-08T14:03:58Z
AUTHORS (5)
ABSTRACT
Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this paper we characterize the in vitro velocity and Reynolds Shear Stress (RSS) fields inside and downstream of three different prototype trileaflet polymeric heart valves. The fluid dynamic differences are then correlated with variations in valve design parameters. The three valves differ in leaflet thickness, ranging from 80 to 120 mum, and commisural design, either closed, opened, or semi-opened. The valves were subjected to aortic flow conditions and the velocity measured using three-dimensional stereo Particle Image Velocimetry. The peak forward flow phase in the three valves was characterized by a strong central orifice jet of approximately 2 m/s with a flat profile along the trailing edge of the leaflets. Leakage jets, with principle RSS magnitudes exceeding 4,500 dyn/cm(2), were observed in all valves with larger leaflet thicknesses and also corresponded to larger leakage volumes. Additional leakage jets were observed at the commissural region of valves with the open and the semi-open commissural designs. The results of the present study indicate that commissural design and leaflet thickness influence valve fluid dynamics and thus the thrombogenic potential of trileaflet polymeric valves.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (83)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....