Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics

Scarcity
DOI: 10.1007/s10462-024-10712-7 Publication Date: 2024-03-15T15:02:10Z
ABSTRACT
Abstract Advancements in artificial intelligence (AI) have driven extensive research into developing diverse multimodal data analysis approaches for smart healthcare. There is a scarcity of large-scale literature this field based on quantitative approaches. This study performed bibliometric and topic modeling examination 683 articles from 2002 to 2022, focusing topics trends, journals, countries/regions, institutions, authors, scientific collaborations. Results showed that, firstly, the number has grown 1 220 with majority being published interdisciplinary journals that link healthcare medical information technology AI. Secondly, significant rise quantity can be attributed increasing contribution scholars non-English speaking countries/regions noteworthy contributions made by authors USA India. Thirdly, researchers show high interest issues, especially, cross-modality magnetic resonance imaging (MRI) brain tumor analysis, cancer prognosis through multi-dimensional AI-assisted diagnostics personalization healthcare, each experiencing increase interest. an emerging trend towards issues such as applying generative adversarial networks contrastive learning image fusion synthesis utilizing combined spatiotemporal resolution functional MRI electroencephalogram data-centric manner. valuable enhancing researchers’ practitioners’ understanding present focal points upcoming trajectories AI-powered analysis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (103)
CITATIONS (34)