Cyclic test and numerical study of precast segmental concrete columns with BFRP and TEED
02 engineering and technology
0201 civil engineering
DOI:
10.1007/s10518-019-00597-1
Publication Date:
2019-04-17T14:25:32Z
AUTHORS (5)
ABSTRACT
Previous studies on the seismic behaviour of precast segmental concrete column revealed that concrete crushing and spalling damages may occur at the toes of the segments due to rocking between segments at the joints. In addition, the energy dissipation capacity of segmental column is smaller than the conventional monolithic column. Energy dissipation bars therefore have been proposed to increase its energy dissipation capability, which, unfortunately, at the cost of also increasing the residual displacement of the column, hence degrades the most advantageous characteristic of precast segmental column. To solve these problems, this paper proposes wrapping the segments with basalt fibre-reinforced polymer (BFRP) to reduce the concrete compressive damage and tension-only external energy dissipation (TEED) devices to dissipate energy without substantially increasing the residual displacement. Experimental cyclic tests and numerical simulations are carried out to examine the effectiveness of the proposed method. The results show that the damage of the segments could be effectively reduced by using BFRP, and the columns show good ductility and almost no strength degradation. The TEED devices are effective to increase the energy dissipation capacity of the column without significantly increasing the residual displacement.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (47)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....