Age-Related Changes in the Thickness of Cortical Zones in Humans
Adult
Aged, 80 and over
Cerebral Cortex
Male
Aging
Brain Mapping
Adolescent
Motor Cortex
Middle Aged
Magnetic Resonance Imaging
Young Adult
03 medical and health sciences
0302 clinical medicine
Humans
Female
Atrophy
Aged
DOI:
10.1007/s10548-011-0198-6
Publication Date:
2011-08-13T06:31:13Z
AUTHORS (4)
ABSTRACT
Structural neuroimaging studies have demonstrated that all regions of the cortex are not affected equally by aging, with frontal regions appearing especially susceptible to atrophy. The "last in, first out" hypothesis posits that aging is, in a sense, the inverse of development: late-maturing regions of the brain are preferentially vulnerable to age-related loss of structural integrity. We tested this hypothesis by analyzing age-related changes in regional cortical thickness via three methods: (1) an exploratory linear regression of cortical thickness and age across the entire cortical mantle (2) an analysis of age-related differences in the thickness of zones of cortex defined by functional/cytoarchitectural affiliation (including primary sensory/motor, unimodal association, heteromodal association, and paralimbic zones), and (3) an analysis of age-related differences in the thickness of regions of cortex defined by surface area expansion in the period between birth and early adulthood. Subjects were grouped as young (aged 18-29, n = 138), middle-aged (aged 30-59, n = 80), young-old (aged 60-79, n = 60), and old-old (aged 80+, n = 38). Thinning of the cortex between young and middle-aged adults was greatest in heteromodal association cortex and regions of high postnatal surface area expansion. In contrast, thinning in old-old age was greatest in primary sensory/motor cortices and regions of low postnatal surface area expansion. In sum, these results lead us to propose a sequential "developmental-sensory" model of aging, in which developmental factors influence cortical vulnerability relatively early in the aging process, whereas later-in more advanced stages of aging-factors specific to primary sensory and motor cortices confer vulnerability. This model offers explicitly testable hypotheses and suggests the possibility that normal aging may potentially allow for multiple opportunities for intervention to promote the structural integrity of the cerebral cortex.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (87)
CITATIONS (140)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....