Ipsilateral Alteration of Resting State Activity Suggests That Cortical Dysfunction Contributes to the Pathogenesis of Cluster Headache
Adult
Male
Brain Mapping
RZ Other systems of medicine / orvostudomány egyéb területei
Rest
610
Brain
Cluster Headache
Middle Aged
Magnetic Resonance Imaging
Transcranial Magnetic Stimulation
03 medical and health sciences
0302 clinical medicine
Humans
Female
Nerve Net
DOI:
10.1007/s10548-016-0535-x
Publication Date:
2016-11-04T07:44:28Z
AUTHORS (12)
ABSTRACT
The pathomechanism of cluster headache (CH) is not entirely understood, but central and peripheral components were suggested. A recent report showed that transcranial magnetic stimulation measured cortical excitability was increased in the hemisphere ipsilalteral to the pain. In the current study we set out to investigate the amplitude of resting brain fMRI activity to find signatures of the increased excitability. High resolution T1 weighted and resting state functional MRI images were acquired from seventeen patients with CH in pain free period and from twenty-six healthy volunteers. Patients' data were normalized (e.g. inverted along the midsagittal axis) according to the headache side. Independent component analysis and a modified dual regression approach were used to reveal the differences between the resting state networks. Furthermore, the timecourses were decomposed into five frequency bands by discrete wavelet decomposition and were also re-regressed to the original data to reveal frequency specific resting activity maps. Two of the identified resting state networks showed alterations in CH. When the data were inverted to have patients' headaches on the left, the ipsilateral attention network showed increased connectivity in 0.08-0.04 Hz frequency band in the in CH group. In the same dataset, cerebellar network showed higher functional connectivity in 0.02-0.01 Hz range in the ipsilateral cerebellum. When the data of patients having headache on the left were inverted to the right, similar increased signal was found in the ipsilateral attention network in 0.08-0.04 Hz band. The cerebellar network showed increased connectivity in the cerebellum in 0.02-0.01 Hz band in patients. The Fourier analysis of these area revealed increased power in CH at all cases. Our results showed alterations of brain functional networks in CH. The alterations of resting state activity were found in the hemisphere ipsilateral to the pain, signifying the altered cortical processing in the pathomechanism of CH.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (18)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....