TEMPO-oxidized cellulose hydrogel for efficient adsorption of Cu2+ and Pb2+ modified by polyethyleneimine
Glutaraldehyde
Langmuir adsorption model
DOI:
10.1007/s10570-021-04052-w
Publication Date:
2021-07-07T20:02:38Z
AUTHORS (6)
ABSTRACT
In this study, the hydrogel was prepared by dissolving and regenerating poplar cellulose in NaOH/urea/water system. The TEMPO-oxidized cellulose hydrogels (TCH) were prepared using microwave-assisted accelerated TEMPO-oxidation system. Polyethyleneimine (PEI) was grafted onto TCH with glutaraldehyde as a cross-linking agent and the products named as TCP. The hydrogels were characterized by SEM, FTIR, XPS, and elemental analyzer. The maximum adsorption capacities of Cu2+ and Pb2+ by TCP were 109.89 mg/g and 279.32 mg/g, respectively. TCP was a single molecule adsorption process with better fitting of the Langmuir model. Adsorption kinetics showed that the Pb2+ adsorption rate of TCP was higher than that for Cu2+. The Cu2+ affinity of TCP was higher than the Pb2+. The adsorption capacity of TCP for Cu2+ and Pb2+ was 58.26 mg/g and 91.96 mg/g, respectively, after five cycles. This study provided a promising option of preparing an efficient and recyclable adsorbent in treating wastewater containing heavy metal, such as Cu2+ and Pb2+.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (44)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....