Mitochondrial DNA Damage and the Involvement of Antioxidant Defense and Repair System in Hippocampi of Rats with Chronic Seizures
Brain damage
DOI:
10.1007/s10571-010-9524-x
Publication Date:
2010-05-05T11:59:05Z
AUTHORS (9)
ABSTRACT
In this study, we demonstrated a decreased level of mitochondrial DNA (mtDNA) with a large number of oxidized bases in hippocampi of rats with epilepsy induced by pilocarpine. In order to verify the underlying mechanism of mtDNA impairment, we detected the response of antioxidant defense system and mitochondrial base excision repair (mtBER) pathway. Superoxide dismutase2 (SOD-2) and glutathione (GSH) were significantly decreased in the experimental group, manifesting a decreased capacity of scavenging free radicals. Mitochondrial base excision repair (mtBER) pathway, which is the main repair pathway for the removal of oxidative base modifications, displayed unbalanced expression in epileptic group. DNA polymerasegamma (polgamma) increased, while apurinic/apyrimidinic endonuclease (APE1), one of mtBER initiators, decreased in mitochondria in the chronic phase of epileptogenesis. In conclusion, mtDNA was impaired during chronic recurrent seizures, whereas the endogenous antioxidants and the mtBER pathway failed to respond to the elevated mtDNA damage.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (24)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....