Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico
2. Zero hunger
13. Climate action
15. Life on land
Groundwater
Mexico
01 natural sciences
Water Pollutants, Chemical
6. Clean water
Arsenic
Environmental Monitoring
0105 earth and related environmental sciences
DOI:
10.1007/s10653-016-9866-5
Publication Date:
2016-08-18T08:48:28Z
AUTHORS (1)
ABSTRACT
High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ18O, δ2H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (28)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....