Effect of xylan oligosaccharides generated from corncobs on food acceptability, growth performance, haematology and immunological parameters of Dicentrarchus labrax fingerlings
0301 basic medicine
Immunoglobulins
Blood Proteins
Animal Feed
Zea mays
Immunity, Innate
Hemoglobins
Leukocyte Count
03 medical and health sciences
Liver
Dietary Supplements
Erythrocyte Count
Hepatocytes
Animals
Animal Nutritional Physiological Phenomena
Bass
Muramidase
Xylans
14. Life underwater
DOI:
10.1007/s10695-015-0110-5
Publication Date:
2015-08-04T01:03:52Z
AUTHORS (8)
ABSTRACT
The objective of this study was to determine the effect of two levels of inclusion of xylan oligosaccharides (XOS) extracted from corncob on growth, feed utilization, immune status and disease resistance of Mediterranean sea bass (Dicentrarchus labrax) fingerlings. Specimens of 4.75 ± 0.69 g at initial density of 2.7 ± 0.13 kg/m(3) were fed during 12 weeks at 0 g kg(-1) diet, 5 g kg(-1) diet and 10 g kg(-1) diet, dietary XOS level of inclusion in a commercial sea bass diet. Feeding the fish at both XOS dietary inclusion levels significantly increased weight gain, protein efficiency ratio and feed conversion ratio. Feeding of supplemented diets to fish led to reducing mortalities after challenging with A. hydrophila. The haematological and immunological parameters were assayed in both pre-challenged and post-challenged groups. There was an increased trend in red blood corpuscles, white blood corpuscles, pack cell volume, haemoglobin (Hb %) and serum protein content in treated groups over the control as time elapsed with the feeding trials. The serum immunoglobulin level and lysozyme activity showed an increased trend in the fed groups. Histological features of the liver showed lower lipid vacuolization and regular-shaped morphology of hepatocytes around the sinusoidal spaces denoting a better utilization of dietary nutrients supported with the morphometric data. In conclusion, XOS added at a designated dose (5 g kg(-1) diet) in the diet improves growth and stimulates the immunity and makes D. labrax fingerlings more resistant to infection by A. hydrophila.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....