Electroreduction of oxygen at tungsten oxide modified carbon-supported RuSex nanoparticles
Glassy carbon
Rotating disk electrode
Nafion
Carbon fibers
Rotating ring-disk electrode
Ruthenium oxide
DOI:
10.1007/s10800-007-9349-6
Publication Date:
2007-07-02T12:03:50Z
AUTHORS (17)
ABSTRACT
WO3-modified carbon-supported bi-component ruthenium–selenium, RuSex (Ru, 20; Se, 1 wt%), nanoparticles were dispersed in the form of Nafion-containing inks on glassy carbon electrodes to produce electrocatalytic interfaces reactive towards electroreduction of dioxygen in acid medium (0.5 mol dm−3 H2SO4). It was apparent from the rotating disk voltammetric experiments that the reduction of oxygen proceeded at WO3-modified electrocatalyst at more than 100 mV more positive potential when compared to bare (WO3-free) RuSex system (that had been prepared under analogous conditions and deposited at the same loading of 156 μg cm−2). The ring-disk rotating voltammetric measurements show that, while the production of hydrogen peroxide intermediate was significantly lower, the kinetic parameter (heterogeneous rate constant) for the oxygen reduction was higher for WO3-modified RuSex (relative to bare RuSex). Comparison was also made to highly-efficient Vulcan-supported Pt or Pt/Co nanoparticles: while the half-wave potential for the oxygen reduction at WO3-modified carbon-supported RuSex was still more negative relative to the potentials characteristic of Pt-based electrocatalysts, the oxygen reduction rotating disk voltammetric current densities (measured at 1600 rpm) were almost identical.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (28)
CITATIONS (34)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....