Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles
Adult
Cryopreservation
Male
Spectroscopy, Near-Infrared
Infant, Newborn
Pregnancy Outcome
Fertilization in Vitro
Embryo Transfer
Culture Media
Embryo Culture Techniques
03 medical and health sciences
0302 clinical medicine
ROC Curve
Pregnancy
Humans
Metabolomics
Female
Embryo Implantation
DOI:
10.1007/s10815-015-0578-z
Publication Date:
2015-10-10T05:44:39Z
AUTHORS (6)
ABSTRACT
Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles.Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes.The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P < 0.01). To predict implantation outcomes, we examined the area under the ROC curve (AUCROC), which was significantly higher for the viability than for the morphology score (0.94 vs. 0.55; P < 0.01); however, the AUCROCs for the composite and viability scores did not differ significantly (0.92 vs. 0.94; P > 0.05).NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....