Dual-targeted hit identification using pharmacophore screening
Aminoacylation
IC50
DOI:
10.1007/s10822-019-00245-5
Publication Date:
2019-11-06T09:03:09Z
AUTHORS (8)
ABSTRACT
Mycobacterium tuberculosis infection remains a major cause of global morbidity and mortality due to the increase of antibiotics resistance. Dual/multi-target drug discovery is a promising approach to overcome bacterial resistance. In this study, we built ligand-based pharmacophore models and performed pharmacophore screening in order to identify hit compounds targeting simultaneously two enzymes-M. tuberculosis leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS). In vitro aminoacylation assay revealed five compounds from different chemical classes inhibiting both enzymes. Among them the most active compound-3-(3-chloro-4-methoxy-phenyl)-5-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-3H-[1,2,3]triazol-4-ylamine (1) inhibits mycobacterial LeuRS and MetRS with IC50 values of 13 µM and 13.8 µM, respectively. Molecular modeling study indicated that compound 1 has similar binding mode with the active sites of both aminoacyl-tRNA synthetases and can be valuable compound for further chemical optimization in order to find promising antituberculosis agents.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....