Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems
Effective atomic number
Half-value layer
Absorption cross section
Mass attenuation coefficient
Bismuth
Photon energy
DOI:
10.1007/s10853-020-04446-4
Publication Date:
2020-02-18T17:03:48Z
AUTHORS (9)
ABSTRACT
Gamma-rays and fast and thermal neutron attenuation features of (Bi2O3)x–(TeO2)(100−x) (where x = 5, 8, 10, 12, and 15 mol%) and [(TeO2)0.7–(B2O3)0.3](1−x)–(Bi2O3)x (where x = 0.05, 0.10, 0,15, 0.20, 0.25, and 0.3 mol%) glass systems have been explored and compared. For all samples, mass attenuation coefficients (μ/ρ) are estimated within 0.015–15 MeV photon energy range by MCNP5 simulation code and correlated with WinXCom results, which showed a satisfactory agreement between computed μ/ρ values by these both methods. Additionally, effective atomic number (Zeff), effective electron density (Neff), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), total atomic cross-section (σa), and total electronic cross-section (σe) are calculated by utilizing μ/ρ values. The μ/ρ, Zeff, and Neff are energy dependent and have higher values at the lowest energy and smaller values at higher energies. Moreover, using the G–P fitting method as a function of penetration depth (up to 40 mfp) and incident photon energy (0.015–15 MeV range), exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) are evaluated. Both 85TeO2–15Bi2O3 (mol%) and 49TeO2–21B2O3–30Bi2O3 (mol%) samples, by possessing higher values of Zeff, exhibit minimum EBF and EABF values. Highest μ/ρ, Zeff values and lowest HVL, TVL, MFP values of 49TeO2–21B2O3–30Bi2O3 (mol%) sample indicated its better gamma-ray absorption capability among all selected glasses. Further, macroscopic effective removal cross-section for fast neutrons (ΣR), coherent scattering cross-section (σcs), incoherent scattering cross-section (σics), absorption cross-section (σA), and total cross-section (σT) values for thermal neutron attenuation have been computed. Among all samples, 49TeO2–21B2O3–30Bi2O3 (mol%) glass possesses a better ΣR value for fast neutron attenuation, while the largest ‘σT’ value of 66.5TeO2–28.5B2O3–5Bi2O3 (mol%) sample suggests its good thermal neutron absorption efficiency.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (74)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....