Different Scenarios for the Prediction of Hospital Readmission of Diabetic Patients
Science & Technology
Diabetes
Patient Readmission
Patient Discharge
3. Good health
03 medical and health sciences
0302 clinical medicine
Risk Factors
Weka
Diabetes Mellitus
Data Mining
Humans
RapidMiner studio
Prediction
Data mining
Readmission
Algorithms
Retrospective Studies
DOI:
10.1007/s10916-020-01686-4
Publication Date:
2021-01-07T02:13:00Z
AUTHORS (7)
ABSTRACT
Hospitals generate large amounts of data on a daily basis, but most of the time that data is just an overwhelming amount of information which never transitions to knowledge. Through the application of Data Mining techniques it is possible to find hidden relations or patterns among the data and convert those into knowledge that can further be used to aid in the decision-making of hospital professionals. This study aims to use information about patients with diabetes, which is a chronic (long-term) condition that occurs when the body does not produce enough or any insulin. The main purpose is to help hospitals improve their care with diabetic patients and consequently reduce readmission costs. An hospital readmission is an episode in which a patient discharged from a hospital is admitted again within a specified period of time (usually a 30 day period). This period allows hospitals to verify that their services are being performed correctly and also to verify the costs of these re-admissions. The goal of the study is to predict if a patient who suffers from diabetes will be readmitted, after being discharged, using Machine Leaning algorithms. The final results revealed that the most efficient algorithm was Random Forest with 0.898 of accuracy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (20)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....