Thermal behavior of the highly luminescent poly(3-hydroxybutyrate):Eu(tta)3(H2O)2 red-emissive complex

Thermogravimetric analysis Thermal Stability Europium Evolved gas analysis Degradation
DOI: 10.1007/s10973-013-3078-3 Publication Date: 2013-04-05T06:11:53Z
ABSTRACT
The aim of this study has been to gain a fundamental understanding of the mechanisms governing thermal degradation of luminescent poly(3-hydroxybutyrate) (PHB). PHB was doped with diaquatris(thenoyltrifluoroacetonate) europium(III) complex, [Eu(tta)3(H2O)2], and different luminescent systems were obtained. The thermal-stability of the luminescent films was discussed and the products of decomposition were analyzed. Thermal degradation of PHB:Eu(tta)3x % systems (x = 0, 1, 5, 10, and 15 %) was elucidated by means of thermogravimetric analysis (TG), the thermal-stability decreases with the increase of europium complex concentration. The PHB polymer decomposed with evolution of carbon dioxide and 2-butenoic acid molecules. The TG–FTIR results, of the gaseous degradation products of PHB in nitrogen atmosphere, indicated that the polymer is stable at temperatures up to 200 °C. Polymer matrix at concentrations above 5 % decomposed with evolution of water molecules among the other gaseous products, which implied the presence of a hydrated complex in the system. The luminescent films showed more flexibility due to a loss in crystallinity, which suggested a potential usefulness in technical applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (15)