PLC based fractional-order PID temperature control in pipeline: design procedure and experimental evaluation

0209 industrial biotechnology 02 engineering and technology
DOI: 10.1007/s11012-020-01215-0 Publication Date: 2020-08-03T12:06:33Z
ABSTRACT
AbstractFractional-order control system design can be used for systems with non-local dynamics involving long-term memory effects. However, implementation of a fractional-order controller in industrial systems is complicated, because of the excessive demand for computational power. The following paper presents the step-by-step design procedure, parameter tuning, and experimental evaluation of the fractional order proportional-integral-derivative (FOPID) controller. The control algorithm is based on the Continued Fraction Expansion approximation of the fractional-order operators. It is implemented on a standard industrial Programmable Logic Controller. The FOPID control system is verified and evaluated in terms of efficiency and robustness using a new laboratory benchmark of a temperature control in the pipeline. The proposed solution shows increased efficiency in terms of robustness compared to the standard PID closed-loop control.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....