Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking

0303 health sciences Pneumonia Network Pharmacology Molecular Dynamics Simulation Mass Spectrometry 3. Good health Molecular Docking Simulation 03 medical and health sciences Fritillaria Original Article Chromatography, High Pressure Liquid Biomarkers Drugs, Chinese Herbal
DOI: 10.1007/s11030-023-10620-y Publication Date: 2023-02-26T18:02:11Z
ABSTRACT
Fritillariae thunbergii bulbus (FTB) is a popular Chinese herbal medicine with various applications in respiratory diseases. The quality evaluation of FTB has been insufficient to date, as the active ingredients and mechanisms of action of FTB remain unclear. This study proposes a novel strategy for exploring the quality markers (Q-markers) of FTB based on UPLC-QTOF-MS analysis, network pharmacology, molecular docking, and molecular dynamics (MD) simulation. A total of 26 compounds in FTB were identified by UPLC-QTOF-MS. Ten of these compounds were screened as Q-markers based on network pharmacology for their anti-pneumonia effects, including imperialine, peimisine, peiminine, ebeiedinone, zhebeirine, puqiedine, 9-hydroxy-10,12-octadecadienoic acid, (9Z,12Z,15Z)-13-hydroxy-9,12,15-octadecatrienoic acid, 9,12,15-octadecatrienoic acid, and (2E,4Z,7Z,10Z,13Z,16Z,19Z)-2,4,7,10,13,16,19-docosaheptaenoic acid methyl ester (DAME). These Q-markers were predicted to act on multiple targets and pathways associated with pneumonia. Molecular docking results revealed that most of the Q-markers showed high affinity with at least one of the main targets of pneumonia, and the top ten complexes were confirmed with MD simulation. Network pharmacology indicated that FTB may act on the TNF signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, etc. The results demonstrated that imperialine (P8), peimisine (P9), peiminine (P11), ebeiedine (P15), zhebeirine (P16), and puqiedine (P18) may be potential Q-markers of FTB, and AKT1, IL-6, VEGFA, TP53, EGFR, STAT3, PPARG, MMP9, and CASP3 may be promising therapeutic targets for pneumonia treatment that are worthy of further research.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (6)