An automatic 2D to 3D video conversion approach based on RGB-D images
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
DOI:
10.1007/s11042-021-10662-0
Publication Date:
2021-02-24T23:02:45Z
AUTHORS (5)
ABSTRACT
3D movies/videos have become increasingly popular in the market; however, they are usually produced by professionals. This paper presents a new technique for the automatic conversion of 2D to 3D video based on RGB-D sensors, which can be easily conducted by ordinary users. To generate a 3D image, one approach is to combine the original 2D color image and its corresponding depth map together to perform depth image-based rendering (DIBR). An RGB-D sensor is one of the inexpensive ways to capture an image and its corresponding depth map. The quality of the depth map and the DIBR algorithm are crucial to this process. Our approach is twofold. First, the depth maps captured directly by RGB-D sensors are generally of poor quality because there are many regions missing depth information, especially near the edges of objects. This paper proposes a new RGB-D sensor based depth map inpainting method that divides the regions with missing depths into interior holes and border holes. Different schemes are used to inpaint the different types of holes. Second, an improved hole filling approach for DIBR is proposed to synthesize the 3D images by using the corresponding color images and the inpainted depth maps. Extensive experiments were conducted on different evaluation datasets. The results show the effectiveness of our method.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....