Tailoring the magnetic properties of cobalt-ferrite nanoclusters

02 engineering and technology 0210 nano-technology
DOI: 10.1007/s11051-016-3325-1 Publication Date: 2016-01-13T19:44:26Z
ABSTRACT
In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....