Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots

0209 industrial biotechnology 02 engineering and technology
DOI: 10.1007/s11071-021-06868-4 Publication Date: 2021-09-01T16:03:28Z
ABSTRACT
This paper proposes a robust finite-time control scheme for the high-precision tracking problem of (FJRs) with various types of unpredictable disturbances. Specifically, based on a flatness dynamic model, a finite-time disturbance observer (FTDO) with only link-side position measurements is firstly developed to estimate the lumped unknown time-varying disturbance and unmeasurable states. Then, through the information of the states and disturbances provided by the FTDO, a robust output feedback controller is constructed, which can accomplish the tasks of disturbance suppression and trajectory tracking in finite time. Moreover, a rigorous stability analysis of the closed-loop system based on a finite-time bounded (FTB) function is conducted. Finally, the simulation results validate the feasibility and superiority of the proposed control scheme against other existing control results.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....